Current Issue : October-December Volume : 2024 Issue Number : 4 Articles : 5 Articles
Privacy-preserving neural networks offer a promising solution to train and predict without user privacy leakage, and fully homomorphic encryption (FHE) stands out as one of the key technologies, as it enables homomorphic operations over encrypted data. However, only addition and multiplication homomorphisms are supported by FHE, and thus, it faces huge challenges when implementing non-linear functions with ciphertext inputs. Among the non-linear functions in neural networks, one may refer to the activation function, the argmax function, and maximum pooling. Inspired by using a composition of low-degree minimax polynomials to approximate sign and argmax functions, this study focused on optimizing the homomorphic argmax approximation, where argmax is a mathematical operation that identifies the index of the maximum value within a given set of values. For the method that uses compositions of low-degree minimax polynomials to approximate argmax, in order to further reduce approximation errors and improve computational efficiency, we propose an improved homomorphic argmax approximation algorithm that includes rotation accumulation, tree-structured comparison, normalization, and finalization phases. And then, the proposed homomorphic argmax algorithm was integrated into a neural network structure. Comparative experiments indicate that the network with our proposed argmax algorithm achieved a slight increase in accuracy while significantly reducing the inference latency by 58%, as the homomorphic sign and rotation operations were rapidly reduced....
Noise is an undesirable and disturbing effect that degrades the quality of an image. The importance of noise reduction in images and its wide-ranging applications are essential. Most popular image noise filters rely on static parameters that are often challenging to fine-tune. Dynamically adapting these static parameters for image noise filters is a critical area of research. In this study, a combination model between the features of complex networks and artificial neural networks is proposed to automatically find the noise reduction parameter of the block-matching and 3D filtering method. Experimental results on the black and white MRI image set have shown that the model correctly predicted the parameters of the BM3D filter and removed the noise in the images of those MRI images. The model gave high denoising results with PSNR of 51.94 and SSIM of 0.998....
Image dehazing aims to reconstruct potentially clear images from corresponding images corrupted by haze. With the rapid development of deep learning-related technologies, dehazing methods based on deep convolutional neural networks have gradually become mainstream. We note that existing dehazing methods often accompany an increase in computational overhead while improving the performance of dehazing. We propose a novel lightweight dehazing neural network to balance performance and efficiency: the g2D-Net. The g2D-Net borrows the design ideas of input-adaptive and long-range information interaction from Vision Transformers and introduces two kinds of convolutional blocks, i.e., the g2D Block and the FFT-g2D Block. Specifically, the g2D Block is a residual block with second-order gated units, which inherit the input-adaptive property of a gated unit and can realize the second-order interaction of spatial information. The FFT-g2D Block is a variant of the g2D Block, which efficiently extracts the global features of the feature maps through fast Fourier convolution and fuses them with local features. In addition, we employ the SK Fusion layer to improve the cascade fusion layer in a traditional U-Net, thus introducing the channel attention mechanism and dynamically fusing information from different paths. We conducted comparative experiments on five benchmark datasets, and the results demonstrate that the g2D-Net achieves impressive dehazing performance with relatively low complexity....
Multistage testing (MST) is a portion of computational adaptive testing that adapts assessment structure at the sublevel rather than the component level. The goal of the MST algorithm is to identify bugs in computer programming, and there is a significant cost to utilising MST due to its decreased versatility during software development and maintenance. The efficiency of most algorithms drastically reduces for adaptive MST with complex feasible regions, while some modern algorithms function well while tackling computerised MST with a basic practicable range. The study offers an automated Adaptive Multistage Testing algorithm based on Adaptive Genetic Algorithm (AMST-AGA) for optimisation and scalability problems, in which constraints are successively introduced and dealt with at various evolutionary phases. In this paper, many test cases will aid in finding bugs and meeting completeness goals. Each time test cases are created, these testing scenarios must continue to pass....
To address the critical issue of polarization during lithium-ion battery charging and its adverse impact on battery capacity and lifespan, this research employs a comprehensive strategy that considers the charging duration, efficiency, and temperature increase. Central to this approach is the proposal of a novel negative pulsed charging technique optimized using the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). This study initiates the creation of an intricate electrothermal coupling model, which simulates variations in internal battery parameters throughout the charging cycle. Subsequently, NSGA-II is implemented in MATLAB to fine-tune pulsed charging and discharging profiles, generating a Pareto front showcasing an array of optimal solutions tailored to a spectrum of goals. Leveraging the capabilities of the COMSOL Multiphysics software 6.2 platform, a high-fidelity simulation environment for lithium-ion battery charging is established that incorporates three charging strategies: constant-current (CC) charging, a multi-stage constant-current (MS-CC) charging protocol, and a pulsed-current (PC) charging strategy. This setup works as a powerful instrument for assessing the individual effects of these strategies on battery characteristics. The simulation results strongly support the superiority of the proposed pulsed-current charging strategy, which excels in increasing the battery temperature and amplifying battery charge capacity. This dual achievement not only bolsters charging efficiency significantly but also underscores the strategy’s potential to augment both the practical utility and long-term viability of lithium-ion batteries, thereby contributing to the advancement of sustainable energy storage solutions....
Loading....